

Final project report EECS 452
Fall 2016

Title of Project: ​VE1939: A Real Time, Expressive Vocal Encoder for Musical Performance

Team members: ​Emma Azelborn, Kenny Carlsen, Alex Miller, Lena Sutter

I. Executive Summary

The goal of the VE1939 Vocoder was to create an expressive, playable vocoder with

a suite of hardware controlled digital effects including distortion, chorus, delay,

compression, and sweepable filters. In addition, the visual design and form factor of

the vocoder was made a priority since these are key aspects to designing a

stage-ready musical product.

Nearly all of the goals outlined in the initial project proposal were met. After the

project proposal presentation, the first discussion of the scope with faculty and

graduate student advisors, the compressor was deemed unnecessary and the effects

in general were designated as stretch goals. By Milestone 2, the vocoder had been

implemented in real time and non-real time versions of the distortion, chorus, and

delay worked as expected. The sweepable filters were in the earliest stages of being

implemented using library filter functions. The final version of the project had a

vocoder which improved greatly over Milestone 2’s vocoder, and delay and bit crush

distortion are implemented and working as expected. Real time versions of the

chorus and sweepable filters were built, but bugs prevented us from launching them

on the effects box for demonstration.

The hardware used in the VE1939 includes two TI C5515 ezDSP chips, a Raspberry Pi

2 Model B, an Arduino Mega, a MIDI keyboard, a 7’’ touch screen, and a

microphone. The Raspberry Pi is used for synthesis, one C5515 does the vocoder

computations, the second C5515 processes effects, and the Mega takes analog

inputs from the knobs and faders that are mounted on the box.

The vocoder algorithm is not much more complex than a simple filter. First, the

signal is windowed and we take the Fast Fourier Transform (FFT) of both the

synthesized signal from the Raspberry Pi and the speech signal from the microphone

input. The magnitude of each signal is multiplied and the phase component of only

the synthesized signal is preserved. The inverse transform of this new magnitude

and phase combination is taken, the window is applied again, and the result is a

vocoded output.

1

Final project report EECS 452
Fall 2016

The distortion, EQ, chorus, and delay effects are all time domain based signal

processing. The distortion is a bit crusher, which is a highly efficient distortion

method that limits the number of bits representing the signal. The delay is a circular

buffer with offset read and write indexes according to the user specified delay time.

It also includes a feedback line between the read and write indexes, allowing for

multiple repetitions of the sound. The best non-real time prototype of the chorus

implements a similar circular buffer and feedback schema, but the distance between

the read and write indexes is sinusoidally varying. In order to prevent pops and clicks

from the discontinuities this causes, linear interpolation is done between the

sampled values. The EQ design uses a filter bank of three simple direct-form II

biquad design with 5 coefficients per filter. The filters were designed to allow the

coefficients to be updated in real time thus giving the user the ability to change filter

gain and corner/center frequency for filter sweep effects.

The final VE1939 prototype performed within our initial goals. The latency of the full

system was approximately 52 ms, making it entirely feasible to perform without a

distracting delay to the musician. Several suitable synthesizer sounds were found to

give a rich timbre to the vocoder. The largest problems the VE1939 is still faced with

are aliasing and high frequency loss due to the 24kHz sampling rate and the missing

EQ and Chorus effects. While the aliasing is minor and the real time EQ and chorus

effects are close to complete, the high frequency loss makes intelligibility difficult on

the vocoded output since fricatives have a lot of high frequency content. This

problem is largely solved with a Wet/Dry knob that allows the performer to add in

an amount of non-vocoded output, which has better intelligibility.

II. Project Description

The following sections will further discuss the VE1939 project goals, list the

processing steps required, and then describe each of those steps in more detail.

Project Goals

A vocoder is a filter that applies the formants of a spoken or sung signal to a

broadband carrier signal such as noise or a sawtooth wave. Depending on the carrier

signal, the vocoder can achieve different effects. With white noise as a carrier, the

vocoded output simply approximates the original speech signal. The vocoder was

originally developed for this speech approximating application in 1939 [1], as it

2

Final project report EECS 452
Fall 2016

allowed for lower bandwidth telephone communication. However, the phenomena

that the vocoder has become known for over time is the singing robotic voice that

results from using a pitched carrier. The sound is often confused with autotune or

talk boxes, but has advantages over each of these effects. Autotune is monophonic,

meaning only one note can be played at once. The talkbox has a steep learning curve

and involves having an uncomfortable plastic tube in the performer’s mouth. The

vocoder overcomes both of these problems, allowing the performer to simply sing

into a microphone and play melodies or chords on a keyboard to create this unique

and captivating effect.

The main goal of the VE1939 was to create a vocoder based performance system

that is playable, customizable, and stylish. In order for the vocoder to be playable,

the latency of the system had to be very low. Ideally, the latency would be less than

30 ms, but we were willing to allow a latency up to 100 ms for the proof of concept

of the VE1939. Ultimately, our prototype had a latency of 52.52ms [Table 1]. The

VE1939 allows the artist to connect their own microphones and synthesizers, which

makes our system more customizable and easier to fit into existing performance

setups. We put a priority on the visual design of the VE1939, creating a retro

aesthetic by building the VE1939 inside of a customized ammo box [Figure 1.].

Figure 1: Finished VE1939 box using ammo box and custom knobs to create a retro aesthetic

3

Final project report EECS 452
Fall 2016

Processing Steps

The VE1939 can be divided into a sequence of processing steps, which are shown in

the high level block diagram [Figure 2]. Each step will be described in more detail in

the following sections. First, a synthesized carrier signal is generated by the

Raspberry Pi. Next, the carrier signal and the speech input are sent into the

vocoding algorithm, which is the heart of the VE1939. The newly vocoded signal is

then sent to the effects module, where it goes through EQ, chorus, distortion, and

delay. The specific settings for those effects are controlled by analog knobs whose

values are sent to the system with an Arduino Mega. The final vocoded and effected

signal is then sent through a wet/dry mix and then to the analog output. Together,

these steps create a dynamic vocoder performance system.

Figure 2: VE1939 High Level Block Diagram

4

Final project report EECS 452
Fall 2016

Synthesis Engine

One of the two major components of a vocoder system is the ‘synth’ input which

acts as the pitched carrier to which the formant of the vocal input is applied. While

developing a synthesis engine was outside the scope of the VE1939 project this

processing step is so critical to the function of a vocoder that special mention of the

VE1939 synthesis engine is required. The VE1939 uses a Raspberry Pi 2 Model B as

its synthesis computer, which operates outside of the main vocoder enclosure

alongside the MIDI keyboard used for performance. The only major requirement for

the synthesis engine was the ability to produce broadband carriers such as sawtooth

wave or a square wave in order to achieve optimal vocoder performance. The

engine ultimately chosen for the VE1939 was the Raspbian OS based Qsynth

platform, which runs on a soundfont architecture and supports an extensive variety

of sounds from the simple waveforms described above to more complicated string

and choir sounds.

 ​Vocoder

The vocoding algorithm is the heart of the VE1939. As described previously, the

vocoded effect involves combining sung or spoken speech with a carrier signal,

resulting in a singing robot sound. The vocoding algorithm has two inputs, a

synthesized broadband carrier signal and speech. An FFT is performed on each

signal to translate them into the frequency domain. Then the magnitude and phase

for each signal is calculated. To apply the formants of the voice to the synth, the

magnitudes of both signals are multiplied together. The phase of the synthesized

carrier is used and the phase of the speech is discarded. This ensures that the phase

will stay continuous, since the carrier is guaranteed to always have a continuous

phase while the speech input will not. This new magnitude and phase are then sent

through an inverse FFT to get the time domain vocoded signal.

5

Final project report EECS 452
Fall 2016

Figure 3: The Vocoder Block Diagram shows the VE1939 vocoding algorithm in detail.

Since the VE1939 is a real time performance system, the vocoding algorithm

operates on one small subset of samples at a time. More specifically, the VE1939

uses an overlap add approach, where a window is applied to each group of samples

processed, and each frame overlaps with the second half of the samples from the

previous group. To transition smoothly between these overlapping frames,

triangular windows are used. The signal is windowed before and after the algorithm

with the square root of a triangle window, which ensures that, if a signal of all ones

was fed in, the overall overlapping frames will always add up to one.

6

Final project report EECS 452
Fall 2016

Figure 4: VE1939 vocoding algorithm applied to speech and carrier input signals

The choice of a sampling rate was a critical decision for the VE1939 as we needed to

maximize our workable frequency range while still maintaining the real time

invariant. Ultimately the VE1939 team decided on a sampling rate of 24 kHz, but

implementing this sampling rate on the C5515 was not without complication. While

the C5515 does provide the ability to alter the default input and output rates the

VE1939 team was unable to successfully configure a C5515 to run at a 24 kHz input

sampling rate. All attempts simply resulted in no output which is believed to be

caused by a hardware configuration bug outside the scope of the project. Adapting

the code to work on only every other sample acted as workaround to force a 24 kHz

sampling rate, but introduced a new problem in the form of aliasing. The C5515 by

default includes an anti-aliasing filter at the nyquist frequency associated with its

input sampling rate, but because the VE1939 uses a sampling rate of 24 kHz without

actually setting the C5515 accordingly the anti-aliasing filter is set 12kHz too high

7

Final project report EECS 452
Fall 2016

and is less effective. Unfortunately this is a trade off the VE1939 team had no choice

but to take due to the apparent hardware bug.

Sweepable Filters/Equalizer

Equalization in a general is the removal of unwanted frequency content from a
signal before output, and is often used in both a ‘signal repair’ sense (where an
attempt is made to remove noise or other unwanted artifacts from the input signal)
and a ‘creative’ sense (where the focus is more on tonally shaping the input signal).
The VE1939 filter bank was designed to serve both purposes by providing
fixed-frequency, variable-gain low pass and high pass filters for signal conditioning as
well as a variable-frequency, variable-Q bandpass filter for creative effects.

Figure 5: A prototype example of the type of serial filtering designed for the VE1939. Frequencies of interest include

a HPF (Yellow) at 1.5 kHz, and LPF (Blue) at 4 kHz, and a BPF (Orange) at 2.7 kHz.

8

Final project report EECS 452
Fall 2016

Figure 6: A Direct-Form II 2nd-order filter topology

The VE1939 equalizer bank uses three direct-form II IIR filters in series via the Texas
Instruments provided iircas5 C5515 function, summarized in figure 5 as a signal flow
topology. Direct-form II filters can be defined as the series of a two-pole filter
section (the right side of the above figure) and a two-zero filter section (the left side
of the above figure) without regard for order [2]. Each filter in the VE1939 can be
separately represented by the difference equation[3]:

(n) b x(n) b x(n) x(n) a y(n) a y(n)y = 0 + 1 − 1 + b2 − 2 − 1 − 1 − 2 − 2

where are filter specific coefficients calculated on-the-fly and normalized, b ...b0 1

to an factor. The VE1939 was designed to allow users to directly manipulate thea0

coefficients for each filter via knobs on the vocoder interface, but due to real time
constraints and output framing issues the EQ effect was left out of the final demo
vocoder. For a more in-depth description of the VE1939 EQ module and discussion
of potential real time bugs see Appendix D.

9

Final project report EECS 452
Fall 2016

Distortion

Distortion is an audio effect which alters the original shape of the waveform, usually

in a nonlinear way. The distortion in the VE1939 is a bit crushing effect which

achieves distortion by limiting the number of bits which represent each sample of

the audio signal. When the bit depth is large, the signal is almost unchanged

because only very insignificant bits are missing. When the depth is small, however,

the signal is more distorted as many bits of precision have been removed. In the

extreme case where the bit depth is only one bit, the signal is reduced to entirely

values of -1, -0.5, 0, or 0.5. This introduces an incredible amount of distortion, which

is shown in the following plot created with a MATLAB prototype. The VE1939

includes a knob which allows the user to change the bit depth in real time, ranging

from 1-15 bits. See Appendix A for a more detailed discussion.

 Figure 8: This plot shows the theoretical frequency response of the bit crush algorithm for a 200 Hz
 sine tone input at varying bit depths. It was generated in MATLAB when prototyping the bit crush algorithm.

Chorus

10

Final project report EECS 452
Fall 2016

Chorus is a versatile effect and its sound can vary wildly between implementations.

A simple chorus makes a signal thicker and richer. More complex chorus effects give

the illusion of one voice becoming multiple. Chorus is defined as being a variable

time delay with delay times ranging between about 10 and 30 ms [6]. This is varied

either sinusoidally or with low passed noise. Multiple delay lines can be used, and

chorus may or may not include feedback. For most digital choruses, interpolation is

used between samples to prevent pops and clicks from discontinuities in the signal.

The VE1939 chorus has a single delay line with sinusoidally varied delay and includes

a feedback line (Figure 6). It uses a simple linear interpolation between samples to

cope with the constantly varying delay.

Figure 7: Block Diagram of VE1939 Chorus

Delay

Delay is an audio effect whereby the input audio is delayed by a set amount before

being output. Generally, the wet signal is mixed with the dry signal to create an echo

effect, and then the wet signal is scaled and fed back into the system to make the

echo continuous. The way it was implemented in the system was by using a circular

buffer of fixed length, and two indices that cycle through it. The first index was a

write index, which took individual samples from the input buffer, added scaled

feedback samples, and put the result into the circular buffer. The second index was a

read index, which took samples out of the circular buffer and, added with dry

passthrough samples, placed them in an output buffer. The read index was also the

source of the feedback samples that were put back into the circular buffer.

11

Final project report EECS 452
Fall 2016

 Figure 9: Delay Block Diagram

The two user controllable parameters of the VE1939 delay were feedback and delay

time. The feedback value was simply converted to a Q15 DATA number before being

passed into the function and used at the writing stage of the effect. The delay time

was passed into the effect as an integer number of samples, and checked against the

previous delay time. If it was different, then the function recalculated where the

read index should be relative to the write index.

Arduino Mega and Physical Interface

A major aspect of making the VE1939 both expressive and playable was providing

the ability for users to change vocoder and effect parameters ‘on-the-fly’. Using an

Arduino Mega as a hardware microcontroller the VE1939 is able to poll the state of

hardware controls on the vocoder enclosure and transmit their value over UART at a

rate of 9600 baud (or 9.6 kHz). Polling is performed applying a bias to the input

device (ex: a potentiometer) and recording the voltage drop across the first stage of

the voltage divider created by the potentiometer. In order to keep the system as

robust as possible the Mega constantly polls for individual control states and

immediately reports them without the use of any sort of C5515 to Arduino interrupt.

This implementation allows the effects-managing C5515 to simply record and use

the newest set of control values when necessary without requiring complicated

multichip timing routines.

12

Final project report EECS 452
Fall 2016

System Architecture Overview

The VE1939 hardware architecture consists of four SoC components and three input
components namely a Raspberry Pi, a Vocoder C5515, an Effects C5515, an Arduino
Mega, a MIDI keyboard, a microphone, and custom effect control knobs. The
system architecture can be best understood by expanding on each component's
role, proceeding from input to output (or from left to right in figure 9).

Figure 10: The VE1939 hardware system architecture diagram

MIDI Keyboard​ - The MIDI keyboard acts as a playing surface for a musician
performing with the VE1939. It is connected to Raspberry Pi via a USB cable.

Raspberry Pi​ - The Raspberry Pi is the host for the VE1939 synthesis engine and
performs all functions necessary for carrier signal generation. It receives input from
the MIDI keyboard via USB and outputs carrier signal audio via a ⅛” audio cable.

Audio Input​ - “Audio Input” represents the vocal input signal path but can take a
variety of forms depending on a particular performers setup. For the Design Expo
and in-class demo the VE1939 developers used a microphone to microphone
pre-amplifier to dynamic range compressor signal chain. Regardless of any situation
specific setup the output of this system element must be an XLR audio cable.

13

Final project report EECS 452
Fall 2016

Vocoder C5515​ - The Vocoder C5515 is the DSP chip which provides the core
functionality of the VE1939 performance system. All vocoder implementation
related processing is performed on this chip. Expected inputs include audio cables
from the Audio Input and Raspberry Pi stages combined into one ⅛” audio cable
input via a signal combiner cable. The expected output is vocoded audio via a ⅛”
audio cable.

Effects C5515​ - The Effects C5515 provides the DSP for all auxiliary VE1939
functionality i.e. effects processing and related tasks. Expected inputs include
vocoded audio via the ⅛” input jack and the physical interface state values via the
UART Rx port. Expected output is the final system output via a ⅛” audio cable.

Knobs/Faders​ - Custom printed knobs installed onto potentiometers and a master
fader provide performers the ability to alter audio effects in real time. Expected
outputs are voltage values via wires to be read by the Arduino Mega.

Arduino Mega​ - The Arduino Mega manages the polling and reporting of knob/fader
states to the effects C5515. Expected inputs are analog voltages from individual
enclosure controls. Expected output is input control values via UART.

Parts List

Note: The VE1939 Parts List [Table 2] includes only those parts that were used in the

building of the VE1939 enclosure and major DSP components. The scope of the

parts list was limited in this way due to the fact that the audio and MIDI input signal

chain could potentially include a large variety of different components depending on

the use case. These potential variances to the input setup need not be considered in

detail because the VE1939 will function as designed given input is provided correctly

as detailed above.

III. Milestones

Throughout the semester, we had two milestone updates where we presented our

progress. These milestone goals and presentations were a tool to gauge our

progress and get feedback on our progress from course staff.

Milestone 1

Our original milestone 1 goals were to have MATLAB prototypes of our vocoder

algorithm and separate effects algorithms. We also planned to have MATLAB

prototypes of our individually developed carrier (synthesizer) signals.

14

Final project report EECS 452
Fall 2016

The carrier signals were delayed and then scrapped entirely, replaced by pre-existing

and freely available Raspberry Pi synthesizer software. It turned out that the carrier

signals were less important than first thought, and using pre-existing software

allowed us to focus on the central concepts of our project instead of MIDI

integration and synthesis.

Additional Milestone 1 goals were ideally C implementations for our effects, some

work on the actual C5515 chip, and work on the physical unit case begun. These

goals were completed or unchanged and did not factor into the final completed

work.

Milestone 2

Our original milestone 2 goals were to create a fully fledged vocal performance

system with vocoder and user-controllable effects. Work between milestone 1 and 2

was to implement synthesis, vocoding, and effects on C5515s, and to build the

control box.

After milestone 1 we decided to abandon synthesis and MIDI input on a C5515, and

to use a Raspberry Pi synthesizer. Additionally, while we worked on the effects until

Design Expo morning, we were unable to functionally get our EQ and chorus

working. These were therefore left out of our demo.

The box was unfinished before milestone 2, but by Design Expo was assembled and

working. The vocoding on a C5515 was completed by milestone 2, and only further

tuned before Design Expo.

IV. Project Demonstration

Our demonstration at the Design Expo and to the class consisted of a self-contained

vocal performance station. We had a keyboard and synthesizer to create a carrier

signal as well as a microphone with a preamp and a compressor to get a good

modulator signal. The VE1939 box was next to the keyboard and the microphone

was handheld. This allowed a person to play the vocoder solo, or two or more

people to play the vocoder and control the effects together. The audio output from

15

Final project report EECS 452
Fall 2016

the box was put through an interface and into two speakers, allowing participants

and audience members to instantly hear the sound that was being processed.

Figure 11: The VE1939 team with our demonstration set up

A popular demo, and what we did in class, was to perform a rendition of Bon Iver’s

“715 - CR∑∑KS”, wherein Lena sang while Emma controlled the synthesizer and

Kenny mixed in several different effects.

V. Contributions of each member of team

Team member Contribution Effort

Emma Azelborn: Vocoding Algorithm, Bit Crush Effect, Painted Box 25%

Kenny Carlsen: Vocoding Algorithm, EQ Effect, Machined Box 25%

Alex Miller Vocoding Algorithm, Delay Effect, Printed Knobs 25%

Lena Sutter Vocoding Algorithm, Chorus Effect, Soldering 25%

16

Final project report EECS 452
Fall 2016

VI. References and citations

[1] Dudley, Homer W., inventor; Bell Telephone Labor Inc, assignee. Signal Transmission.

US Patent 2,151,091. March 21, 1939.

[2] Direct-Form II - ​https://ccrma.stanford.edu/~jos/fp/Direct_Form_II.html

[3] Pirkle, William C. Designing Audio Effect Plug-ins in C with Digital Audio Signal

Processing Theory. Burlington, MA: Focal, 2013.

[4] Bristow-Johnson, Robert. "Cookbook Formulae for Audio EQ Biquad Filter

Coefficients." Musicdsp.org. Web. 20 Dec. 2016.

<​http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt​>.

[5] dude837, “Delicious max/MSP Tutorial 4: Vocoder,” in YouTube, Youtube, 2010.

[Online]. Available: ​https://youtu.be/4feOFLX6238​. Accessed: Dec. 2, 2016

[6] U. Zölzer, DAFX: Digital Audio Effects, U. Zölzer, Ed,. 2nd ed. Oxford, England: Wiley,

John & Sons, 2011.

[7] Regan, Rick. "Decimal/Two's Complement Converter." Exploring Binary RSS. Web. 20

Dec. 2016. <​http://www.exploringbinary.com/twos-complement-converter​>.

[8] "MSP Tutorial 25: Using the FFT." Cycling '74. Web. 20 Dec. 2016.

<https://docs.cycling74.com/max5/tutorials/msp-tut/mspchapter25.html>.

Tables

Table 1—Measured System Latency

Trial Latency (ms)

1 50.0

2 54.4

3 48.6

4 52.2

5 57.4

Average 52.52

17

https://ccrma.stanford.edu/~jos/fp/Direct_Form_II.html
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
https://youtu.be/4feOFLX6238
http://www.exploringbinary.com/twos-complement-converter

Final project report EECS 452
Fall 2016

Table 2—Full Parts List

Quantity Price Name of Part URL

Enclosure
Controls

10 0.95 10k Ohm Linear
Rotary
Potentiometer

https://www.sparkfun.com/products/9939

4 0.95 10k Ohm
Logarithmic Rotary
Potentiometer

https://www.sparkfun.com/products/9940

1 4.67 10k Ohm Audio (Log)
100mm slide
potentiometer

http://www.mouser.com/ProductDetail/B
ourns/PTB0143-2010BPA103/?qs=sGAEpi
MZZMtC25l1F4XBUzCTSW%2fg3nBSFmF17
1TWe78%3d

3 1.99 Toggle Switch https://www.sparkfun.com/products/9276

Enclosure
Inputs/Output
s

1 2.49 Neutrik NCJ4Fl-S
Combo MONO 3-Pin
XLRF/ 1/4 Inch Jack
Chassis Mount with
Solder Cups

http://www.markertek.com/product/ncj5fi
-s/neutrik-ncj5fi-s-combo-mono-3-pin-xlrf-
1-4-inch-jack-chassis-mount-with-solder-cu
ps

2 0.99 SPF-CM 1/4-Inch
Phone Female
Chassis Mount
Connector

http://www.markertek.com/product/spf-c
m/spf-cm-1-4-inch-phone-female-chassis-
mount-connector

18

Final project report EECS 452
Fall 2016

Table 2—Full Parts List ​(continued)

Quantity Pric
e

Name of Part URL

SoC +
Peripherals

1 45.95 Arduino Mega 2560
Rev3

https://store-usa.arduino.cc/products/ard
uino-mega-2560-rev3?utm_source=redire
cts&utm_medium=store.arduino.cc&utm_
campaign=303_Redirects

2 LAB C5515 eZDSP USB
Stick

N/A

1 OWN Raspberry Pi 2 Model
B

N/A

1 79.95 Pi Foundation
Display - 7"
Touchscreen Display
for Raspberry Pi

https://www.adafruit.com/products/2718

1 4.95 Adjustable
Bent-Wire Stand

https://www.adafruit.com/products/1679

1 16.99 AmazonBasics 4 Port
USB 3.0 Hub with
5v/2.5A power
adapter

https://www.amazon.com/dp/B00DQFGH
80/ref=psdc_281413_t3_B00TPMEOYM

Cables

2 LAB ⅛” Audio Cable (for
C5515 to C5515 and
RPi to C5515
connections)

N/A

Various N/A ¼” or XLR Cables to
connect main audio
input to enclosure

N/A

19

Final project report EECS 452
Fall 2016

Appendices

A. Distortion Development

B. Chorus Development

C. Delay Development

D. Sweepable Filter/Equalizer Development

E. Additional Vocoder Information

F. Enclosure Build

G. External Hardware

Appendix A - Distortion

When developing the distortion algorithm for the VE1939, a fuzz distortion based on an

exponential function was first researched. After working with the C5515 and gaining a better

understanding of its capabilities, it was quickly apparent that all of our effects would be too

taxing for the SoC to process in real time. Thus, the team investigated ways to make our effects

as efficient as possible. Since the fuzz distortion was based on an exponential function, which

itself was very slow to compute, it was not possible to optimize the distortion enough as it was.

We eventually decided to change our approach and implement a bit crush algorithm instead.

This choice allowed for a much faster distortion, since the bit crush algorithm is incredibly

efficient. It also fits the VE1939 better than the fuzz distortion, since it is a very digital, lofi

effect just as vocoding is. The choice to build a bit crush distortion instead of a fuzz distortion

led to a more cohesive product which was much more efficient.

The bit crush algorithm works by limiting the number of bits which can represent the input

signal. The bit depth parameter represents this number, and is specifically the number of bits

past the signed bit. Therefore for a 16 bit two’s complement number, the maximum bit depth

is 15 bits. For any setting, unique sample values can be represented. When the bit2 (bitDepth + 1)

depth parameter is at the maximum of 15 bits, every bit is passed through and the signal is

unchanged. On the other extreme, a bit depth of 1 bit means that only a single bit can

represent the signal, with all 14 others always being set to zero. This limits the signal to 4

unique values: -1, -0.5, 0, and 0.5.

One of the most challenging parts of building the bit crush effect was actually implementing the

prototype in MATLAB. While bit manipulations are very straight-forward in C, they are much

tougher in MATLAB, especially as the given ​bin2dec()​ function does not support two’s

20

Final project report EECS 452
Fall 2016

complement. The final MATLAB implementation involved manually changing the sign of

numbers represented in Q15 format one bit at a time[7]. Below are shown two plots[Figure A. 1

and Figure A. 2] comparing the frequency spectrum of the MATLAB prototype and measured

values from the final VE1939 implementation. These plots show the distortion in MATLAB and

on the VE1939, featuring peaks at the fundamental frequency of the input (200Hz) and similar

distortion spectrums.

Figure A.1: Comparison of bit crushed 200 Hz sinusoid in MATLAB prototype and final VE1939 implementation for
bit depth = 15

21

Final project report EECS 452
Fall 2016

Figure A.2: Comparison of bit crushed 200 Hz sinusoid in MATLAB prototype and final VE1939 implementation for
bit depth = 6

Appendix B - Chorus

Prototyping the chorus involved many decisions given the flexibility and range of applications of

the effect. Therefore there were several iterations of the MATLAB version. The first utilized

lowpass noise to vary the time delay and had no feedback. It also did not yet feature

interpolation. The result sounded like a chorus effect, but it was fairly subtle and had pops and

clicks due to discontinuities. The second iteration swapped out the low passed noise for a

sinusoidally varying delay. This gave a more distinctly vintage sound that complemented the

aesthetic of the VE1939 well. Feedback was then added to increase the dramaticness of the

effect, since that was more computationally efficient than adding multiple delay lines in. In

addition, feedback is easy to control from a linear potentiometer and varying feedback can add

a wonderful dynamic aspect to chorus. Ultimately, simple linear interpolation was introduced

between consecutive samples. This smoothed out the sound considerably. Once this

framework was laid out parameters such as the frequency of the time delay variation and the

wet/dry mix were tweaked to get the desired effect. Given that chorus is such a varied effect,

there is no suitable metric for measuring the performance of our algorithm and the parameters

were chosen solely based on qualitative analysis from several people trained in critical listening.

The end result of these design choices is a pleasant, almost a spring reverb type chorus.

Unfortunately, implementing this version in C proved to be a challenge. The MATLAB version

that we favored took too much time to run without using vectorized functions and, given that

TI’s DSP library had proven unreliable, we were unable to optimize it to a point where the

chorus would be able to run alongside other effects. The feedback was omitted from the

algorithm and we were able to run the simplified version on the C5515. However, this version

still dropped frames with enough regularity that the chorus effect was overpowered by loud

clicks and it was not suitable for demonstration.

Appendix C - Delay

The MATLAB prototyping stage of the delay was quite different from the final algorithm that

made it onto the chip. A variable buffer size was used with a single index instead of two indices

in a circular buffer. However, this was unreasonable on the C5515 for several reasons. The

delay time would not have been able to be smoothly adjusted live, and was more inefficient as

well.

22

Final project report EECS 452
Fall 2016

Despite using two indices, the way they were cycled through the circular buffer was efficiently

done through the use of always incrementing and anding their values instead of using if

statements. However, this limited the size of the circular delay to powers of two, and given the

C5515s limited memory may have been an issue. Fortunately, a buffer size of 32768 (2^15)

DATA values was easily obtainable, which gave a delay time of slightly more than 1.5 seconds.

In testing, buffer sizes of up to 50000 were able to be built and run on a C5515, but 65536

(2^16) was too large. In a way, the sampling rate of 24 kHz worked to the delay’s advantage, in

that the same size of a buffer was able to hold a longer delay.

The sound of the delay was quite clear with no fundamental, audible issues. The biggest issue

was the same as the rest of the vocoder, being the scaling of the signal and sensitivity to high

and low gain. Since the VE1939 was already having issues with low gain and noise, there was no

scaling done to the dry signal, and the delay was simply added on. With short delay times and

high feedback this could cause serious clipping and unwanted distortion, but only at extreme

settings. As such, feedback was limited to a maximum of 90%, and any remaining distortion was

determined to be less harmful than losing volume through scaling.

Analyzing recorded audio samples with a controlled input, we can see that the delay time for a

24000 sample delay is correctly 1 second. Furthermore, the feedback value was set to 50%, and

the first delay is correctly half the size of the original signal (0.062 V to 0.031 V).

23

Final project report EECS 452
Fall 2016

Figure C.1: Example of delay set to 1 second and 50% feedback

24

Final project report EECS 452
Fall 2016

Figure C.2: Amplitude of delayed signal is 50% of original

During testing, there were several distinct effects that a simple delay could enact when a vocal

sample was put through it. Below 240 samples of delay (10ms), a comb filter effect was very

noticeable, with the feedback roughly controlling the “wetness” of the effect. Between 240 and

960 samples (10ms and 40ms), it still sounded filtered, but depending on the feedback

(between 50% and 80%) sounded like a bad reverb. At higher (>80%) feedback values, it

sounded like a flutter echo. Above 960 samples, but below 1920 samples (40ms and 80ms), the

flutter was the primary effect. Above 80ms, it sounds more and more like a simple delay.

Appendix D - Sweepable Filters/Equalizer

25

Final project report EECS 452
Fall 2016

At the outset of the VE1939 project the goal behind having an EQ module was the ability to

perform filter sweeps while performing with the vocoder. A bank of three filters was deemed

appropriate and in order to keep the number of front panel controls below a reasonable limit

the decision was made to only allow real time center frequency variation (in addition to

variable-gain) on the mid-band. High and low pass bands were slated to be delegated to fixed

corner frequencies (approx. 300 Hz and 9 kHz respectively) with variable gain to allow users to

control the attenuation at the edges of the frequency spectrum.

Mathematical Background

In order to allow the VE1939 EQ module to have real time adjustable filters a Direct-Form II

biquad approach was taken (see “Sweepable Filters/Equalizer” for a general overview of this

topology). Each filter was comprised of five coefficients which were updated in real time

according to changing knob values and the filter dependant biquad coefficient equations [4]

seen below. Note the inclusion of two sets of midband equations - this is a consequence of a

mid-semester design change that will be discussed further below.

General Direct-Form II Biquad Transfer Function

 (z) ((b /a) (b /a) (b /a)) / (1 (a /a) (a /a))H = 0 0 + 1 0 * z−1 + 2 0 * z−2 + 1 0 * z−1 + 2 0 * z−2

Intermediate Variables

 2π f /Fw0 = * 0 s

 sin(w) / 2 α = 0 *Q

 where G gain (for peaking BPF only)A = √10G/20 =

26

Final project report EECS 452
Fall 2016

Table D.1: Coefficient equations for filters used in the VE1939

LPF Coefficient
Equations

HPF Coefficient
Equations

Constant 0dB
peak gain BPF

Peaking BPF

 (1 cos(w) / 2b0 = − 0 (1 cos(w) / 2b0 = + 0 αb0 = 1 b0 = + α * A

 1 cos(w)b1 = − 0 1 cos(w)b1 = + 0 0b1 = os(w)b1 = − 2 * c 0

 b b2 = 0 b b2 = 0 b2 = − α 1 b2 = − α * A

 1 αa0 = + 1 αa0 = + 1 αa0 = + 1 /Aa0 = + α

 os(w) a1 = − 2 * c 0 os(w) a1 = − 2 * c 0 os(w) a1 = − 2 * c 0 os(w)a1 = − 2 * c 0

 1 αa2 = − 1 αa2 = − 1 αa2 = − 1 /Aa2 = − α

Implementation Details and Design Challenges

All filters were implemented in real time on the C5515 using the built-in TI iircas5 function. The

iircas5() function expected inputs were five filter coefficients scaled by the coefficient (asa0

shown in the transfer function above). All calculations were performed on the C5515 as Q15

DATA integers. Coefficient overflow was a significant challenge in filter implementation but

was ultimately handled by sacrificing precision for increased range by converting the offending

Q15 number to a Q14 number before being passed to the iircas5 function.

As mentioned above the design of the EQ module and specifically the midband underwent

significant changes towards the end of the semester. While the original plan was to use a

27

Final project report EECS 452
Fall 2016

peaking EQ to create the boosted midband normally used for filter sweep effects an alternative

plan was devised due to the following:

i. Peaking EQ calculations required a log scale gain calculation which was likely would

cause the EQ algorithm to be too slow for real time

ii. Due to gain scaling effects of the iircas5 function only a very small peak (~1dB) was

obtainable before filter overflow distortion occurred

The solution was to use a 0 dB peak gain bandpass filter with variable Q instead of variable gain.

The variable Q design works based on the idea that a large boost at a particular frequency of

interest can be approximated by attenuating all frequencies ​around​ the frequency of interest,

resulting in similar relative gain per frequency. Rather than increasing mid band filter gain

users instead increase the Q which ‘tightens’ the filter response around the center frequency,

producing a more stark response when the filter is swept across the frequency spectrum.

MATLAB Prototyping and Theoretical Response

In order to demonstrate the effectiveness of the 0 dB peak gain bandpass filter technique

MATLAB filter bank prototyping was conducted. For the purposes of this prototyping the

spectrum was bandlimited via the LPF and HPF to a more easily plotted 1.5 kHz to 4 kHz range.

0 dB peak gain BPF were then added at a variety of Q values and the system response was

plotted, shown here in increasing Q order.

28

Final project report EECS 452
Fall 2016

Figure D.1: With very low Q values the system exhibits a very flat response between the band limiting LPF and HPF

Figure D.2: Increased Q values begin to tighten the system response, with intermediate values giving a response
influenced by all three filters

29

Final project report EECS 452
Fall 2016

Figure D.3: With a higher but still intermediate value the influence of all filters is apparent but the BPF begins to
dominate the response

Figure D.4: At extreme Q settings the system response is completely dominated by the BPF and is extremely spectrum
limited.

30

Final project report EECS 452
Fall 2016

By allowing the user complete control over the Q factor of the mid band filter the VE1939 EQ

can be used for applications ranging from subtle frequency shaping to dramatic, tight frequency

sweeps across the spectrum. While perhaps not the maximally dramatic design, the 0 dB peak

gain bandpass filter provides core functionality for frequency sweep effects over the range

required by the VE1939 without risk of overflow.

Results

Unfortunately, the VE1939 EQ module was non-operational in our final production version of

the VE1939. While the effect was successfully implemented on its own in real time as detailed

above there were unreconcilable errors introduced when the effect was incorporated into our

master effects suite project. Project completion timeframe constraints prohibited detailed

analysis of effect failure points, but qualitatively speaking the effect was unable to produce

desired filtering without the introduction of additional noise. While debugging the effect the

VE1939 team discovered bizarre framing issues where pieces of previous frames would be

deposited into the next frame. These observations point towards a disagreement between EQ

frame processing and the frame overlapping at the project level, but further analysis has not

been completed.

However, despite the unsuccessful attempt to integrate the EQ module into the master effects

suite, performance of the effect in real time was still partially verified by evaluating the effect in

its standalone configuration. In limited test cases, the filters performed as expected

(parameters were similar to the Q ~4.5 MATLAB prototype above) and were able to operate

within real time constraints.

Appendix E - Additional Vocoder Information

The vocoding algorithm is the heart of the VE1939. Before implementing it on the C5515, our

team did extensive prototyping in MATLAB to develop our algorithm. The earliest prototype did

not include overlapping frames. This led to lots of clicks due to discontinuities across

boundaries of fft frames. To remove these discontinuities, our team started investigating an

overlap-add approach which involves overlapping fft frames. With this approach we could

window each frame, transitioning smoothly to the edge of the frame and removing the

discontinuity on the edge. By processing overlapping frames and then adding the outputs

together, there is no longer a hard switch from one frame to the next, creating seamless

transitions.

31

Final project report EECS 452
Fall 2016

One challenge of the overlap-add approach was choosing the best window for the task. There

are many industry standard window shapes, each optimized for different tasks. For our

application, we needed a windowing scheme that would keep the overall signal the same level.

This means that if a signal of all ones is passed into the system, a signal of all ones needs to

come out. Any variance means that the scaling is not consistent and would result in periodic

amplitude modulation, which is undesirable. After experimenting with a number of window

shapes, we ended up modeling our windowing scheme after the one used in Max/MSP’s real

time fft[8]. We window our signal with the square root of a triangle window before and after

processing, which results in an even and consistent overall sum when subsequent frames share

half of the samples.

One significant feature of our prototype vocoding algorithm which was not implemented in the

VE1939 was fricative detection. Fricatives are noisy consonant sounds essential to enunciation.

When using only a pitched carrier signal as has been described in this report, these consonants

get muddled and lost, resulting in a slightly garbled vocoded sound. It is tough to understand

the words or lyrics in the original speech. To combat this problem, our team developed a

fricative detection algorithm based on zero crossings, and when fricatives were detected we

switched the carrier from the pitched synth to purely white noise. This made the artist’s diction

much more apparent, keeping the original fricatives much closer to their original sound.

Unfortunately, this feature is not implemented in the VE1939. Due to hardware limitations, the

C5515 can barely keep up with the sampling rate even without this feature, and adding this

feature would have required dropping the sampling rate even lower. At that point, any high

frequency content that would have been added by the noise carrier would have no effect on

the output because the nyquist frequency would be so low. If the VE1939 is ever produced as a

consumer product, our team recommends using a more modern chip which is powerful enough

to include this fricative detection feature.

Appendix F - Enclosure Build

The VE1939 was built into a vintage metal ammo box that was customly machined and painted

by team members. An original logo and knobs were also added to create a one-of-a-kind look.

After being sourced, the layout of the gear in the box was drawn up to flow in an intuitive way

from input, through a wet/dry mixer, then the effects, and then to the output. Marks were then

32

Final project report EECS 452
Fall 2016

made for the holes in the top and sides. In addition to being drilled, internal reinforcements in

the box needed to be molded so that the knobs could reach the outside.

Once everything was installed, the labels penciled in and then carefully hand painted for the

controls. Measured tick marks were also painted around the controls to allow users to have an

easier time remembering their settings.

Custom knob covers were also created for the VE1939. Precisely measured to fit the ordered

potentiometers, they were first modeled in SolidWorks before several prototypes were 3D

printed. At first, fittings were difficult and the design deemed unwieldy. Within a few revisions

acceptable prints were created.

A logo was also designed for the VE1939. Inspired by WWII era fighter planes, it has angled

wings in silver and blue with the ‘VE 1939' name stamped across it. Several iterations were

gone through to find the correct combination of colors and style that then informed the rest of

the design decisions.

Knobs were soldered and run into a breadboard circuit that allowed us to separate the controls

for each parameter while also grouping them so we could have a bypass switch that turned off

power for the effects potentiometers. This set their values to 0 and let the signal go through the

effects C5515 without being changed. The wet/dry potentiometer was on a different loop,

however, and could be used regardless of how the bypass switch was set.

Input on the left (XLR) and output on the right (¼” TRS). Jacks and necessary cables were

measured out and soldered to minimize waste of space.

Figure F.1: Input and Output Jack on the box

33

Final project report EECS 452
Fall 2016

Figure F.2: Logo example

Appendix G - External Equipment

To help narrow the focus of the VE1939 project, several pieces of external hardware were used.

These were not used in place of any effects or processing that we ever planned to do, but

allowed us to focus on what did fall within the scope of our original plan.

Our first input was a Shure PE15L Cardioid Dynamic microphone, with a built-in switch. This

allowed us to be able to reject unwanted noise beyond what the performer was directly saying,

and to be able to quickly turn off the input if things went wrong.

Figure G.1: Microphone with switched used for vocal input

34

Final project report EECS 452
Fall 2016

On the input side, we used a preamp and compressor to allowed us to keep the input loud

enough to make it through the vocoding processes, but compress it to keep it from clipping.

The equipment used was an M-Audio Duo Mic Pre Stand Alone A/D Converter and a Symetrix

501 Compressor, pictured here.

Figure G.2: Preamp and Compressor used for vocal input

For the synthesizer, we used an M-Audio Axiom49 USB MIDI keyboard plugged into a Raspberry

Pi. We used such a relatively large keyboard because it more closely reflected the range of a

human singer, more so than an octave and a half keyboard.

Figure G.3 MIDI Keyboard used for Synthesizer input

35

Final project report EECS 452
Fall 2016

On the output side, we used a Rane LT22 Line Transformer to condition the signal and prevent

hums and other external noise. This then fed two Equator D5 Direct Field Monitors, which

provided us slightly more volume and much higher fidelity than the lab speakers.

Figure G.4: Speakers and Isolation Transformer

The downside to the majority of the external equipment used was simply greatly increasing the

size and complexity of our setup, going from a medium sized ammo box to a full tabletop of

gear. However, the flexibility that accommodating a variety of input and output signal chains

affords means the VE1939 could potentially fit into more live setups and existing musician rigs,

making the benefits of the external gear far outweigh the costs.

36

