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I. Executive Summary 

The goal of the VE1939 Vocoder was to create an expressive, playable vocoder with 

a suite of hardware controlled digital effects including distortion, chorus, delay, 

compression, and sweepable filters.  In addition, the visual design and form factor of 

the vocoder was made a priority since these are key aspects to designing a 

stage-ready musical product.  

 

Nearly all of the goals outlined in the initial project proposal were met. After the 

project proposal presentation, the first discussion of the scope with faculty and 

graduate student advisors, the compressor was deemed unnecessary and the effects 

in general were designated as stretch goals. By Milestone 2, the vocoder had been 

implemented in real time and non-real time versions of the distortion, chorus, and 

delay worked as expected. The sweepable filters were in the earliest stages of being 

implemented using library filter functions.  The final version of the project had a 

vocoder which improved greatly over Milestone 2’s vocoder, and delay and bit crush 

distortion are implemented and working as expected. Real time versions of the 

chorus and sweepable filters were built, but bugs prevented us from launching them 

on the effects box for demonstration. 

 

The hardware used in the VE1939 includes two TI C5515 ezDSP chips, a Raspberry Pi 

2 Model B, an Arduino Mega, a MIDI keyboard, a 7’’ touch screen, and a 

microphone. The Raspberry Pi is used for synthesis, one C5515 does the vocoder 

computations, the second C5515 processes effects, and the Mega takes analog 

inputs from the knobs and faders that are mounted on the box.  

 

The vocoder algorithm is not much more complex than a simple filter. First, the 

signal is windowed and we take the Fast Fourier Transform (FFT) of both the 

synthesized signal from the Raspberry Pi and the speech signal from the microphone 

input. The magnitude of each signal is multiplied and the phase component of only 

the synthesized signal is preserved. The inverse transform of this new magnitude 

and phase combination is taken, the window is applied again, and the result is a 

vocoded output.  
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The distortion, EQ, chorus, and delay effects are all time domain based signal 

processing. The distortion is a bit crusher, which is a highly efficient distortion 

method that limits the number of bits representing the signal. The delay is a circular 

buffer with offset read and write indexes according to the user specified delay time. 

It also includes a feedback line between the read and write indexes, allowing for 

multiple repetitions of the sound. The best non-real time prototype of the chorus 

implements a similar circular buffer and feedback schema, but the distance between 

the read and write indexes is sinusoidally varying. In order to prevent pops and clicks 

from the discontinuities this causes, linear interpolation is done between the 

sampled values.   The EQ design uses a filter bank of three simple direct-form II 

biquad design with 5 coefficients per filter.  The filters were designed to allow the 

coefficients to be updated in real time thus giving the user the ability to change filter 

gain and corner/center frequency for filter sweep effects. 

 

The final VE1939 prototype performed within our initial goals. The latency of the full 

system was approximately 52 ms, making it entirely feasible to perform without a 

distracting delay to the musician. Several suitable synthesizer sounds were found to 

give a rich timbre to the vocoder. The largest problems the VE1939 is still faced with 

are aliasing and high frequency loss due to the 24kHz sampling rate and the missing 

EQ and Chorus effects. While the aliasing is minor and the real time EQ and chorus 

effects are close to complete, the high frequency loss makes intelligibility difficult on 

the vocoded output since fricatives have a lot of high frequency content. This 

problem is largely solved with a Wet/Dry knob that allows the performer to add in 

an amount of non-vocoded output, which has better intelligibility. 

 

II. Project Description 

The following sections will further discuss the VE1939 project goals, list the 

processing steps required, and then describe each of those steps in more detail. 

 

Project Goals 

A vocoder is a filter that applies the formants of a spoken or sung signal to a 

broadband carrier signal such as noise or a sawtooth wave. Depending on the carrier 

signal, the vocoder can achieve different effects. With white noise as a carrier, the 

vocoded output simply approximates the original speech signal. The vocoder was 

originally developed for this speech approximating application in 1939 [1], as it 
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allowed for lower bandwidth telephone communication. However, the phenomena 

that the vocoder has become known for over time is the singing robotic voice that 

results from using a pitched carrier. The sound is often confused with autotune or 

talk boxes, but has advantages over each of these effects. Autotune is monophonic, 

meaning only one note can be played at once. The talkbox has a steep learning curve 

and involves having an uncomfortable plastic tube in the performer’s mouth. The 

vocoder overcomes both of these problems, allowing the performer to simply sing 

into a microphone and play melodies or chords on a keyboard to create this unique 

and captivating effect.  

 

The main goal of the VE1939 was to create a vocoder based performance system 

that is playable, customizable, and stylish. In order for the vocoder to be playable, 

the latency of the system had to be very low. Ideally, the latency would be less than 

30 ms, but we were willing to allow a latency up to 100 ms for the proof of concept 

of the VE1939.  Ultimately, our prototype had a latency of 52.52ms [Table 1].  The 

VE1939 allows the artist to connect their own microphones and synthesizers, which 

makes our system more customizable and easier to fit into existing performance 

setups. We put a priority on the visual design of the VE1939, creating a retro 

aesthetic by building the VE1939 inside of a customized ammo box [Figure 1.]. 

 

Figure 1: Finished VE1939 box using ammo box and custom knobs to create a retro aesthetic 
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Processing Steps 

The VE1939 can be divided into a sequence of processing steps, which are shown in 

the high level block diagram [Figure 2]. Each step will be described in more detail in 

the following sections.  First, a synthesized carrier signal is generated by the 

Raspberry Pi.  Next, the carrier signal and the speech input are sent into the 

vocoding algorithm, which is the heart of the VE1939.  The newly vocoded signal is 

then sent to the effects module, where it goes through EQ, chorus, distortion, and 

delay.  The specific settings for those effects are controlled by analog knobs whose 

values are sent to the system with an Arduino Mega.  The final vocoded and effected 

signal is then sent through a wet/dry mix and then to the analog output. Together, 

these steps create a dynamic vocoder performance system. 

 

Figure 2: VE1939 High Level Block Diagram 
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Synthesis Engine 

One of the two major components of a vocoder system is the ‘synth’ input which 

acts as the pitched carrier to which the formant of the vocal input is applied.  While 

developing a synthesis engine was outside the scope of the VE1939 project this 

processing step is so critical to the function of a vocoder that special mention of the 

VE1939 synthesis engine is required.  The VE1939 uses a Raspberry Pi 2 Model B as 

its synthesis computer, which operates outside of the main vocoder enclosure 

alongside the MIDI keyboard used for performance.  The only major requirement for 

the synthesis engine was the ability to produce broadband carriers such as sawtooth 

wave or a square wave in order to achieve optimal vocoder performance.  The 

engine ultimately chosen for the VE1939 was the Raspbian OS based Qsynth 

platform, which runs on a soundfont architecture and supports an extensive variety 

of sounds from the simple waveforms described above to more complicated string 

and choir sounds. 

 

      ​Vocoder 

The vocoding algorithm is the heart of the VE1939.  As described previously, the 

vocoded effect involves combining sung or spoken speech with a carrier signal, 

resulting in a singing robot sound.  The vocoding algorithm has two inputs, a 

synthesized broadband carrier signal and speech.  An FFT is performed on each 

signal to translate them into the frequency domain. Then the magnitude and phase 

for each signal is calculated.  To apply the formants of the voice to the synth, the 

magnitudes of both signals are multiplied together.  The phase of the synthesized 

carrier is used and the phase of the speech is discarded.  This ensures that the phase 

will stay continuous, since the carrier is guaranteed to always have a continuous 

phase while the speech input will not.  This new magnitude and phase are then sent 

through an inverse FFT to get the time domain vocoded signal.  
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Figure 3: The Vocoder Block Diagram shows the VE1939 vocoding algorithm in detail.  

 

Since the VE1939 is a real time performance system, the vocoding algorithm 

operates on one small subset of samples at a time.  More specifically, the VE1939 

uses an overlap add approach, where a window is applied to each group of samples 

processed, and each frame overlaps with the second half of the samples from the 

previous group.  To transition smoothly between these overlapping frames, 

triangular windows are used.  The signal is windowed before and after the algorithm 

with the square root of a triangle window, which ensures that, if a signal of all ones 

was fed in, the overall overlapping frames will always add up to one. 
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Figure 4: VE1939 vocoding algorithm applied to speech and carrier input signals 

 

The choice of a sampling rate was a critical decision for the VE1939 as we needed to 

maximize our workable frequency range while still maintaining the real time 

invariant.  Ultimately the VE1939 team decided on a sampling rate of 24 kHz, but 

implementing this sampling rate on the C5515 was not without complication.  While 

the C5515 does provide the ability to alter the default input and output rates the 

VE1939 team was unable to successfully configure a C5515 to run at a 24 kHz input 

sampling rate. All attempts simply resulted in no output which is believed to be 

caused by a hardware configuration bug outside the scope of the project.  Adapting 

the code to work on only every other sample acted as workaround to force a 24 kHz 

sampling rate, but introduced a new problem in the form of aliasing.  The C5515 by 

default includes an anti-aliasing filter at the nyquist frequency associated with its 

input sampling rate, but because the VE1939 uses a sampling rate of 24 kHz without 

actually setting the C5515 accordingly the anti-aliasing filter is set 12kHz too high 

7 
 



 

Final project report EECS 452  
Fall 2016 

 

and is less effective.  Unfortunately this is a trade off the VE1939 team had no choice 

but to take due to the apparent hardware bug. 

Sweepable Filters/Equalizer 

Equalization in a general is the removal of unwanted frequency content from a 
signal before output, and is often used in both a ‘signal repair’ sense (where an 
attempt is made to remove noise or other unwanted artifacts from the input signal) 
and a ‘creative’ sense (where the focus is more on tonally shaping the input signal). 
The VE1939 filter bank was designed to serve both purposes by providing 
fixed-frequency, variable-gain low pass and high pass filters for signal conditioning as 
well as a variable-frequency, variable-Q bandpass filter for creative effects. 

 
Figure 5: A prototype example of the type of serial filtering designed for the VE1939.  Frequencies of interest include 

a HPF (Yellow) at 1.5 kHz, and LPF (Blue) at 4 kHz, and a BPF (Orange) at 2.7 kHz. 
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Figure 6: A Direct-Form II 2nd-order filter topology 

 
 

The VE1939 equalizer bank uses three direct-form II IIR filters in series via the Texas 
Instruments provided iircas5 C5515 function, summarized in figure 5  as a signal flow 
topology.  Direct-form II filters can be defined as the series of a two-pole filter 
section (the right side of the above figure) and a two-zero filter section (the left side 
of the above figure) without regard for order [2].  Each filter in the VE1939 can be 
separately represented by the difference equation[3]: 

 
(n) b x(n) b x(n ) x(n ) a y(n ) a y(n )y =  0 +  1 − 1 + b2 − 2 −  1 − 1 −  2 − 2  

 
where  are filter specific coefficients calculated on-the-fly and normalized, b  ...b0  1  

to an factor.  The VE1939 was designed to allow users to directly manipulate thea0  

coefficients for each filter via knobs on the vocoder interface, but due to real time 
constraints and output framing issues the EQ effect was left out of the final demo 
vocoder.  For a more in-depth description of the VE1939 EQ module and discussion 
of potential real time bugs see Appendix D.  
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Distortion 

Distortion is an audio effect which alters the original shape of the waveform, usually 

in a nonlinear way.  The distortion in the VE1939 is a bit crushing effect which 

achieves distortion by limiting the number of bits which represent each sample of 

the audio signal.  When the bit depth is large, the signal is almost unchanged 

because only very insignificant bits are missing.  When the depth is small, however, 

the signal is more distorted as many bits of precision have been removed.  In the 

extreme case where the bit depth is only one bit, the signal is reduced to entirely 

values of -1, -0.5, 0, or 0.5.  This introduces an incredible amount of distortion, which 

is shown in the following plot created with a MATLAB prototype.  The VE1939 

includes a knob which allows the user to change the bit depth in real time, ranging 

from 1-15 bits. See Appendix A for a more detailed discussion. 

 

              Figure 8: This plot shows the theoretical frequency response of the bit crush algorithm for a 200 Hz  
          sine tone input at varying bit depths. It was generated in MATLAB when prototyping the bit crush algorithm. 

 

Chorus 
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Chorus is a versatile effect and its sound can vary wildly between implementations. 

A simple chorus makes a signal thicker and richer. More complex chorus effects give 

the illusion of one voice becoming multiple. Chorus is defined as being a variable 

time delay with delay times ranging between about 10 and 30 ms [6]. This is varied 

either sinusoidally or with low passed noise. Multiple delay lines can be used, and 

chorus may or may not include feedback. For most digital choruses, interpolation is 

used between samples to prevent pops and clicks from discontinuities in the signal. 

The VE1939 chorus has a single delay line with sinusoidally varied delay and includes 

a feedback line (Figure 6). It uses a simple linear interpolation between samples to 

cope with the constantly varying delay. 

Figure 7: Block Diagram of VE1939 Chorus 

 

Delay 

Delay is an audio effect whereby the input audio is delayed by a set amount before 

being output. Generally, the wet signal is mixed with the dry signal to create an echo 

effect, and then the wet signal is scaled and fed back into the system to make the 

echo continuous. The way it was implemented in the system was by using a circular 

buffer of fixed length, and two indices that cycle through it. The first index was a 

write index, which took individual samples from the input buffer, added scaled 

feedback samples, and put the result into the circular buffer. The second index was a 

read index, which took samples out of the circular buffer and, added with dry 

passthrough samples, placed them in an output buffer. The read index was also the 

source of the feedback samples that were put back into the circular buffer. 
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                                                           Figure 9: Delay Block Diagram 

 

The two user controllable parameters of the VE1939 delay were feedback and delay 

time. The feedback value was simply converted to a Q15 DATA number before being 

passed into the function and used at the writing stage of the effect. The delay time 

was passed into the effect as an integer number of samples, and checked against the 

previous delay time. If it was different, then the function recalculated where the 

read index should be relative to the write index. 

 

Arduino Mega and Physical Interface 

A major aspect of making the VE1939 both expressive and playable was providing 

the ability for users to change vocoder and effect parameters ‘on-the-fly’.  Using an 

Arduino Mega as a hardware microcontroller the VE1939 is able to poll the state of 

hardware controls on the vocoder enclosure and transmit their value over UART at a 

rate of 9600 baud (or 9.6 kHz).  Polling is performed applying a bias to the input 

device (ex: a potentiometer) and recording the voltage drop across the first stage of 

the voltage divider created by the potentiometer.  In order to keep the system as 

robust as possible the Mega constantly polls for individual control states and 

immediately reports them without the use of any sort of C5515 to Arduino interrupt. 

This implementation allows the effects-managing C5515 to simply record and use 

the newest set of control values when necessary without requiring complicated 

multichip timing routines. 
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System Architecture Overview 

The VE1939 hardware architecture consists of four SoC components and three input 
components namely a Raspberry Pi, a Vocoder C5515, an Effects C5515, an Arduino 
Mega, a MIDI keyboard, a microphone, and custom effect control knobs.  The 
system architecture can be best understood by expanding on each component's 
role, proceeding from input to output (or from left to right in figure 9). 

Figure 10: The VE1939 hardware system architecture diagram 
 
 

MIDI Keyboard​ - The MIDI keyboard acts as a playing surface for a musician 
performing with the VE1939.  It is connected to Raspberry Pi via a USB cable. 

 
Raspberry Pi​ - The Raspberry Pi is the host for the VE1939 synthesis engine and 
performs all functions necessary for carrier signal generation.  It receives input from 
the MIDI keyboard via USB and outputs carrier signal audio via a ⅛” audio cable. 

 
Audio Input​ - “Audio Input” represents the vocal input signal path but can take a 
variety of forms depending on a particular performers setup.  For the Design Expo 
and in-class demo the VE1939 developers used a microphone to microphone 
pre-amplifier to dynamic range compressor signal chain.  Regardless of any situation 
specific setup the output of this system element must be an XLR audio cable. 
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Vocoder C5515​ - The Vocoder C5515 is the DSP chip which provides the core 
functionality of the VE1939 performance system.  All vocoder implementation 
related processing is performed on this chip.  Expected inputs include audio cables 
from the Audio  Input and Raspberry Pi stages combined into one ⅛” audio cable 
input via a signal combiner cable.  The expected output is vocoded audio via a ⅛” 
audio cable. 

 
Effects C5515​ - The Effects C5515 provides the DSP for all auxiliary VE1939 
functionality i.e. effects processing and related tasks. Expected inputs include 
vocoded audio via the ⅛” input jack and the physical interface state values via the 
UART Rx port. Expected output is the final system output via a ⅛” audio cable. 

 
Knobs/Faders​ - Custom printed knobs installed onto potentiometers and a master 
fader provide performers the ability to alter audio effects in real time.  Expected 
outputs are voltage values via wires to be read by the Arduino Mega. 

 
Arduino Mega​ - The Arduino Mega manages the polling and reporting of knob/fader 
states to the effects C5515.  Expected inputs are analog voltages from individual 
enclosure controls.  Expected output is input control values via UART. 

 

Parts List 

Note:  The VE1939 Parts List [Table 2] includes only those parts that were used in the 

building of the VE1939 enclosure and major DSP components.  The scope of the 

parts list was limited in this way due to the fact that the audio and MIDI input signal 

chain could potentially include a large variety of different components depending on 

the use case.  These potential variances to the input setup need not be considered in 

detail because the VE1939 will function as designed given input is provided correctly 

as detailed above.  

 

III. Milestones 

Throughout the semester, we had two milestone updates where we presented our 

progress.  These milestone goals and presentations were a tool to gauge our 

progress and get feedback on our progress from course staff. 

 

Milestone 1 

Our original milestone 1 goals were to have MATLAB prototypes of our vocoder 

algorithm and separate effects algorithms. We also planned to have MATLAB 

prototypes of our individually developed carrier (synthesizer) signals. 
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The carrier signals were delayed and then scrapped entirely, replaced by pre-existing 

and freely available Raspberry Pi synthesizer software. It turned out that the carrier 

signals were less important than first thought, and using pre-existing software 

allowed us to focus on the central concepts of our project instead of MIDI 

integration and synthesis. 

 

Additional Milestone 1 goals were ideally C implementations for our effects, some 

work on the actual C5515 chip, and work on the physical unit case begun. These 

goals were completed or unchanged and did not factor into the final completed 

work. 

 

Milestone 2 

Our original milestone 2 goals were to create a fully fledged vocal performance 

system with vocoder and user-controllable effects. Work between milestone 1 and 2 

was to implement synthesis, vocoding, and effects on C5515s, and to build the 

control box. 

 

After milestone 1 we decided to abandon synthesis and MIDI input on a C5515, and 

to use a Raspberry Pi synthesizer. Additionally, while we worked on the effects until 

Design Expo morning, we were unable to functionally get our EQ and chorus 

working. These were therefore left out of our demo. 

 

The box was unfinished before milestone 2, but by Design Expo was assembled and 

working. The vocoding on a C5515 was completed by milestone 2, and only further 

tuned before Design Expo. 

 

IV. Project Demonstration 

Our demonstration at the Design Expo and to the class consisted of a self-contained 

vocal performance station. We had a keyboard and synthesizer to create a carrier 

signal as well as a microphone with a preamp and a compressor to get a good 

modulator signal. The VE1939 box was next to the keyboard and the microphone 

was handheld. This allowed a person to play the vocoder solo, or two or more 

people to play the vocoder and control the effects together. The audio output from 
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the box was put through an interface and into two speakers, allowing participants 

and audience members to instantly hear the sound that was being processed. 

  
Figure 11: The VE1939 team with our demonstration set up 

 

A popular demo, and what we did in class, was to perform a rendition of Bon Iver’s 

“715 - CR∑∑KS”, wherein Lena sang while Emma controlled the synthesizer and 

Kenny mixed in several different effects. 

 

 

V. Contributions of each member of team 

Team member Contribution              Effort 

Emma Azelborn: Vocoding Algorithm, Bit Crush Effect, Painted Box 25% 

Kenny Carlsen: Vocoding Algorithm, EQ Effect, Machined Box 25% 

Alex Miller Vocoding Algorithm, Delay Effect, Printed Knobs 25% 

Lena Sutter Vocoding Algorithm, Chorus Effect, Soldering 25%  
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Tables 

Table 1—Measured System Latency 

Trial Latency (ms) 

1 50.0 

2 54.4 

3 48.6 

4 52.2 

5 57.4 

Average 52.52 
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Table 2—Full Parts List 

Quantity Price Name of Part URL 

Enclosure 
Controls 

   

10 0.95 10k Ohm Linear 
Rotary 
Potentiometer 

https://www.sparkfun.com/products/9939 

4 0.95 10k Ohm 
Logarithmic Rotary 
Potentiometer 

https://www.sparkfun.com/products/9940 

1 4.67 10k Ohm Audio (Log) 
100mm slide 
potentiometer 

http://www.mouser.com/ProductDetail/B
ourns/PTB0143-2010BPA103/?qs=sGAEpi
MZZMtC25l1F4XBUzCTSW%2fg3nBSFmF17
1TWe78%3d 

3 1.99 Toggle Switch https://www.sparkfun.com/products/9276 

Enclosure 
Inputs/Output
s 

   

1 2.49 Neutrik NCJ4Fl-S 
Combo MONO 3-Pin 
XLRF/ 1/4 Inch Jack 
Chassis Mount with 
Solder Cups 

http://www.markertek.com/product/ncj5fi
-s/neutrik-ncj5fi-s-combo-mono-3-pin-xlrf-
1-4-inch-jack-chassis-mount-with-solder-cu
ps 

2 0.99 SPF-CM 1/4-Inch 
Phone Female 
Chassis Mount 
Connector 

http://www.markertek.com/product/spf-c
m/spf-cm-1-4-inch-phone-female-chassis-
mount-connector 
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Table 2—Full Parts List ​(continued) 

Quantity Pric
e 

Name of Part URL 

SoC + 
Peripherals  

   

1 45.95 Arduino Mega 2560 
Rev3 

https://store-usa.arduino.cc/products/ard
uino-mega-2560-rev3?utm_source=redire
cts&utm_medium=store.arduino.cc&utm_
campaign=303_Redirects 

2 LAB  C5515 eZDSP USB 
Stick 

N/A 

1 OWN Raspberry Pi 2 Model 
B 

N/A 

1 79.95 Pi Foundation 
Display - 7" 
Touchscreen Display 
for Raspberry Pi 

https://www.adafruit.com/products/2718 

1 4.95 Adjustable 
Bent-Wire Stand 

https://www.adafruit.com/products/1679 

1 16.99 AmazonBasics 4 Port 
USB 3.0 Hub with 
5v/2.5A power 
adapter 

https://www.amazon.com/dp/B00DQFGH
80/ref=psdc_281413_t3_B00TPMEOYM 

Cables    

2 LAB ⅛” Audio Cable (for 
C5515 to C5515  and 
RPi to C5515 
connections) 

N/A 

Various N/A ¼” or XLR Cables to 
connect main audio 
input to enclosure 

N/A 
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Appendices 

A. Distortion Development  

B. Chorus Development 

C. Delay Development 

D. Sweepable Filter/Equalizer Development 

E. Additional Vocoder Information 

F. Enclosure Build 

G. External Hardware 

 

Appendix A - Distortion 

When developing the distortion algorithm for the VE1939, a fuzz distortion based on an 

exponential function was first researched.  After working with the C5515 and gaining a better 

understanding of its capabilities, it was quickly apparent that all of our effects would be too 

taxing for the SoC to process in real time.  Thus, the team investigated ways to make our effects 

as efficient as possible.  Since the fuzz distortion was based on an exponential function, which 

itself was very slow to compute, it was not possible to optimize the distortion enough as it was. 

We eventually decided to change our approach and implement a bit crush algorithm instead. 

This choice allowed for a much faster distortion, since the bit crush algorithm is incredibly 

efficient.  It also fits the VE1939 better than the fuzz distortion, since it is a very digital, lofi 

effect just as vocoding is.  The choice to build a bit crush distortion instead of a fuzz distortion 

led to a more cohesive product which was much more efficient. 

The bit crush algorithm works by limiting the number of bits which can represent the input 

signal.  The bit depth parameter represents this number, and is specifically the number of bits 

past the signed bit.  Therefore for a 16 bit two’s complement number, the maximum bit depth 

is 15 bits.  For any setting, unique sample values can be represented. When the bit2 (bitDepth + 1)  

depth parameter is at the maximum of 15 bits, every bit is passed through and the signal is 

unchanged.  On the other extreme, a bit depth of 1 bit means that only a single bit can 

represent the signal, with all 14 others always being set to zero. This limits the signal to 4 

unique values: -1, -0.5, 0, and 0.5. 

One of the most challenging parts of building the bit crush effect was actually implementing the 

prototype in MATLAB. While bit manipulations are very straight-forward in C, they are much 

tougher in MATLAB, especially as the given ​bin2dec()​ function does not support two’s 
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complement.  The final MATLAB implementation involved manually changing the sign of 

numbers represented in Q15 format one bit at a time[7]. Below are shown two plots[Figure A. 1 

and Figure A. 2] comparing the frequency spectrum of the MATLAB prototype and measured 

values from the final VE1939 implementation.  These plots show the distortion in MATLAB and 

on the VE1939, featuring peaks at the fundamental frequency of the input (200Hz) and similar 

distortion spectrums. 

 

Figure A.1: Comparison of bit crushed 200 Hz sinusoid in MATLAB prototype and final VE1939 implementation for 
bit depth = 15 
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Figure A.2: Comparison of bit crushed 200 Hz sinusoid in MATLAB prototype and final VE1939 implementation for 
bit depth = 6 

Appendix B - Chorus 

Prototyping the chorus involved many decisions given the flexibility and range of applications of 

the effect. Therefore there were several iterations of the MATLAB version. The first utilized 

lowpass noise to vary the time delay and had no feedback. It also did not yet feature 

interpolation. The result sounded like a chorus effect, but it was fairly subtle and had pops and 

clicks due to discontinuities. The second iteration swapped out the low passed noise for a 

sinusoidally varying delay. This gave a more distinctly vintage sound that complemented the 

aesthetic of the VE1939 well. Feedback was then added to increase the dramaticness of the 

effect, since that was more computationally efficient than adding multiple delay lines in. In 

addition, feedback is easy to control from a linear potentiometer and varying feedback can add 

a wonderful dynamic aspect to chorus.  Ultimately, simple linear interpolation was introduced 

between consecutive samples. This smoothed out the sound considerably.  Once this 

framework was laid out parameters such as  the frequency of the time delay variation and the 

wet/dry mix were tweaked to get the desired effect. Given that chorus is such a varied effect, 

there is no suitable metric for measuring the performance of our algorithm and the parameters 

were chosen solely based on qualitative analysis from several people trained in critical listening. 

The end result of these design choices is a pleasant, almost a spring reverb type chorus.  

Unfortunately, implementing this version in C proved to be a challenge. The MATLAB version 

that we favored took too much time to run without using vectorized functions and, given that 

TI’s DSP library had proven unreliable, we were unable to optimize it to a point where the 

chorus would be able to run alongside other effects. The feedback was omitted from the 

algorithm and we were able to run the simplified version on the C5515. However, this version 

still dropped frames with enough regularity that the chorus effect was overpowered by loud 

clicks and it was not suitable for demonstration. 

Appendix C - Delay 

The MATLAB prototyping stage of the delay was quite different from the final algorithm that 

made it onto the chip. A variable buffer size was used with a single index instead of two indices 

in a circular buffer. However, this was unreasonable on the C5515 for several reasons. The 

delay time would not have been able to be smoothly adjusted live, and was more inefficient as 

well. 
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Despite using two indices, the way they were cycled through the circular buffer was efficiently 

done through the use of always incrementing and anding their values instead of using if 

statements. However, this limited the size of the circular delay to powers of two, and given the 

C5515s limited memory may have been an issue. Fortunately, a buffer size of 32768 (2^15) 

DATA values was easily obtainable, which gave a delay time of slightly more than 1.5 seconds. 

In testing, buffer sizes of up to 50000 were able to be built and run on a C5515, but 65536 

(2^16) was too large. In a way, the sampling rate of 24 kHz worked to the delay’s advantage, in 

that the same size of a buffer was able to hold a longer delay. 

The sound of the delay was quite clear with no fundamental, audible issues. The biggest issue 

was the same as the rest of the vocoder, being the scaling of the signal and sensitivity to high 

and low gain. Since the VE1939 was already having issues with low gain and noise, there was no 

scaling done to the dry signal, and the delay was simply added on. With short delay times and 

high feedback this could cause serious clipping and unwanted distortion, but only at extreme 

settings. As such, feedback was limited to a maximum of 90%, and any remaining distortion was 

determined to be less harmful than losing volume through scaling. 

Analyzing recorded audio samples with a controlled input, we can see that the delay time for a 

24000 sample delay is correctly 1 second. Furthermore, the feedback value was set to 50%, and 

the first delay is correctly half the size of the original signal (0.062 V to 0.031 V). 
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Figure C.1: Example of delay set to 1 second and 50% feedback 
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Figure C.2: Amplitude of delayed signal is 50% of original 

During testing, there were several distinct effects that a simple delay could enact when a vocal 

sample was put through it. Below 240 samples of delay (10ms), a comb filter effect was very 

noticeable, with the feedback roughly controlling the “wetness” of the effect. Between 240 and 

960 samples (10ms and 40ms), it still sounded filtered, but depending on the feedback 

(between 50% and 80%) sounded like a bad reverb. At higher (>80%) feedback values, it 

sounded like a flutter echo. Above 960 samples, but below 1920 samples (40ms and 80ms), the 

flutter was the primary effect. Above 80ms, it sounds more and more like a simple delay. 

 

Appendix D - Sweepable Filters/Equalizer 
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At the outset of the VE1939 project the goal behind having an EQ module was the ability to 

perform filter sweeps while performing with the vocoder.  A bank of three filters was deemed 

appropriate and in order to keep the number of front panel controls below a reasonable limit 

the decision was made to only allow real time center frequency variation (in addition to 

variable-gain)  on the mid-band.  High and low pass bands were slated to be delegated to fixed 

corner frequencies (approx. 300 Hz and 9 kHz respectively)  with variable gain to allow users to 

control the attenuation at the edges of the frequency spectrum.  

Mathematical Background 

In order to allow the VE1939 EQ module to have real time adjustable filters a Direct-Form II 

biquad approach was taken (see “Sweepable Filters/Equalizer” for a general overview of this 

topology).  Each filter was comprised of five coefficients which were updated in real time 

according to changing knob values and the filter dependant biquad coefficient equations [4] 

seen below.  Note the inclusion of two sets of midband equations - this is a consequence of a 

mid-semester design change that will be discussed further below. 

General Direct-Form II Biquad Transfer Function 

  (z) ( (b /a ) (b /a )  (b /a ) ) / (1 (a /a )  (a /a ) )H =  0 0 +  1 0 * z−1 +  2 0 * z−2 +  1 0 * z−1 +  2 0 * z−2  

Intermediate Variables 

 2π f /Fw0 =  *  0 s  

 sin(w ) / 2  α =  0 *Q   

  where G gain  (for peaking BPF  only)A =  √10G/20 =   
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Table D.1: Coefficient equations for filters used in the VE1939 

LPF Coefficient 
Equations 

HPF Coefficient 
Equations 

Constant 0dB 
peak gain BPF 

Peaking BPF 

 (1 cos(w ) / 2b0 =  −  0   (1 cos(w ) / 2b0 =  +  0   αb0 =    1 b0 =  + α * A  

 1 cos(w )b1 =  −  0   1 cos(w )b1 =  +  0   0b1 =    os(w )b1 =  − 2 * c 0  

 b  b2 =  0   b  b2 =  0   b2 =  − α   1 b2 =  − α * A  

 1 αa0 =  +    1 αa0 =  +    1 αa0 =  +    1 /Aa0 =  + α  

 os(w ) a1 =  − 2 * c 0   os(w ) a1 =  − 2 * c 0   os(w ) a1 =  − 2 * c 0   os(w )a1 =  − 2 * c 0  

 1 αa2 =  −    1 αa2 =  −    1 αa2 =  −    1 /Aa2 =  − α  

 
 

Implementation Details and Design Challenges 

All filters were implemented in real time on the C5515 using the built-in TI iircas5 function.  The 

iircas5() function expected inputs were five filter coefficients scaled by the coefficient (asa0  

shown in the transfer function above).  All calculations were performed on the C5515 as Q15 

DATA integers.  Coefficient overflow was a significant challenge in filter implementation but 

was ultimately handled by sacrificing precision for increased range by converting the offending 

Q15 number to a Q14 number before being passed to the iircas5 function. 

 

 

 

As mentioned above the design of the EQ module and specifically the midband underwent 

significant changes towards the end of the semester.  While the original plan was to use a 
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peaking EQ to create the boosted midband normally used for filter sweep effects an alternative 

plan was devised due to the following: 

i. Peaking EQ calculations required a log scale gain calculation which was likely would 

cause the EQ algorithm to be too slow for real time 

ii. Due to gain scaling effects of the iircas5 function only a very small peak (~1dB) was 

obtainable before filter overflow distortion occurred 

The solution was to use a 0 dB peak gain bandpass filter with variable Q instead of variable gain. 

The variable Q design works based on the idea that a large boost at a particular frequency of 

interest can be approximated by attenuating all frequencies ​around​  the frequency of interest, 

resulting in similar relative gain per frequency.  Rather than increasing mid band filter gain 

users instead increase the Q which ‘tightens’ the filter response around the center frequency, 

producing a more stark response when the filter is swept across the frequency spectrum.  

 

MATLAB Prototyping and Theoretical Response 

In order to demonstrate the effectiveness of the 0 dB peak gain bandpass filter technique 

MATLAB filter bank prototyping was conducted.  For the purposes of this prototyping the 

spectrum was bandlimited via the LPF and HPF to a more easily plotted 1.5 kHz to 4 kHz range. 

0 dB peak gain BPF were then added at a variety of Q values and the system response was 

plotted, shown here in increasing Q order. 
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Figure D.1: With very low Q values the system exhibits a very flat response between the band limiting LPF and HPF 

 

 

Figure D.2:  Increased Q values begin to tighten the system response, with intermediate values giving a response 
influenced by all three filters 
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Figure D.3: With a higher but still intermediate value the influence of all filters is apparent but the BPF begins to 
dominate the response 

Figure D.4: At extreme Q settings the system response is completely dominated by the BPF and is extremely spectrum 
limited. 
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By allowing the user complete control over the Q factor of the mid band filter the VE1939 EQ 

can be used for applications ranging from subtle frequency shaping to dramatic, tight frequency 

sweeps across the spectrum.  While perhaps not the maximally dramatic design, the 0 dB peak 

gain bandpass filter provides core functionality for frequency sweep effects over the range 

required by the VE1939 without risk of overflow. 

Results 

Unfortunately, the VE1939 EQ module was non-operational in our final production version of 

the VE1939.  While the effect was successfully implemented on its own in real time as detailed 

above there were unreconcilable errors introduced when the effect was incorporated into our 

master effects suite project.  Project completion timeframe constraints prohibited detailed 

analysis of effect failure points, but qualitatively speaking the effect was unable to produce 

desired filtering without the introduction of additional noise.  While debugging the effect the 

VE1939 team discovered bizarre framing issues where pieces of previous frames would be 

deposited into the next frame.  These observations point towards a disagreement between EQ 

frame processing and the frame overlapping at the project level, but further analysis has not 

been completed. 

However, despite the unsuccessful attempt to integrate the EQ module into the master effects 

suite, performance of the effect in real time was still partially verified by evaluating the effect in 

its standalone configuration.  In limited test cases, the filters performed as expected 

(parameters were similar to the Q ~4.5 MATLAB prototype above) and were able to operate 

within real time constraints. 

 

Appendix E - Additional Vocoder Information 

The vocoding algorithm is the heart of the VE1939.  Before implementing it on the C5515, our 

team did extensive prototyping in MATLAB to develop our algorithm. The earliest prototype did 

not include overlapping frames. This led to lots of clicks due to discontinuities across 

boundaries of fft frames.  To remove these discontinuities, our team started investigating an 

overlap-add approach which involves overlapping fft frames.  With this approach we could 

window each frame, transitioning smoothly to the edge of the frame and removing the 

discontinuity on the edge.  By processing overlapping frames and then adding the outputs 

together, there is no longer a hard switch from one frame to the next, creating seamless 

transitions. 
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One challenge of the overlap-add approach was choosing the best window for the task.  There 

are many industry standard window shapes, each optimized for different tasks.  For our 

application, we needed a windowing scheme that would keep the overall signal the same level. 

This means that if a signal of all ones is passed into the system, a signal of all ones needs to 

come out. Any variance means that the scaling is not consistent and would result in periodic 

amplitude modulation, which is undesirable.  After experimenting with a number of window 

shapes, we ended up modeling our windowing scheme after the one used in Max/MSP’s real 

time fft[8]. We window our signal with the square root of a triangle window before and after 

processing, which results in an even and consistent overall sum when subsequent frames share 

half of the samples.  

One significant feature of our prototype vocoding algorithm which was not implemented in the 

VE1939 was fricative detection. Fricatives are noisy consonant sounds essential to enunciation. 

When using only a pitched carrier signal as has been described in this report, these consonants 

get muddled and lost, resulting in a slightly garbled vocoded sound.  It is tough to understand 

the words or lyrics in the original speech.  To combat this problem, our team developed a 

fricative detection algorithm based on zero crossings, and when fricatives were detected we 

switched the carrier from the pitched synth to purely white noise.  This made the artist’s diction 

much more apparent, keeping the original fricatives much closer to their original sound. 

Unfortunately, this feature is not implemented in the VE1939.  Due to hardware limitations, the 

C5515 can barely keep up with the sampling rate even without this feature, and adding this 

feature would have required dropping the sampling rate even lower.  At that point, any high 

frequency content that would have been added by the noise carrier would have no effect on 

the output because the nyquist frequency would be so low.  If the VE1939 is ever produced as a 

consumer product, our team recommends using a more modern chip which is powerful enough 

to include this fricative detection feature. 

 

Appendix F - Enclosure Build 

The VE1939 was built into a vintage metal ammo box that was customly machined and painted 

by team members. An original logo and knobs were also added to create a one-of-a-kind look. 

After being sourced, the layout of the gear in the box was drawn up to flow in an intuitive way 

from input, through a wet/dry mixer, then the effects, and then to the output. Marks were then 
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made for the holes in the top and sides. In addition to being drilled, internal reinforcements in 

the box needed to be molded so that the knobs could reach the outside. 

Once everything was installed, the labels penciled in and then carefully hand painted for the 

controls. Measured tick marks were also painted around the controls to allow users to have an 

easier time remembering their settings. 

Custom knob covers were also created for the VE1939. Precisely measured to fit the ordered 

potentiometers, they were first modeled in SolidWorks before several prototypes were 3D 

printed. At first, fittings were difficult and the design deemed unwieldy. Within a few revisions 

acceptable prints were created. 

A logo was also designed for the VE1939. Inspired by WWII era fighter planes, it has angled 

wings in silver and blue with the ‘VE 1939' name stamped across it. Several iterations were 

gone through to find the correct combination of colors and style that then informed the rest of 

the design decisions. 

Knobs were soldered and run into a breadboard circuit that allowed us to separate the controls 

for each parameter while also grouping them so we could have a bypass switch that turned off 

power for the effects potentiometers. This set their values to 0 and let the signal go through the 

effects C5515 without being changed. The wet/dry potentiometer was on a different loop, 

however, and could be used regardless of how the bypass switch was set. 

Input on the left (XLR) and output on the right (¼” TRS). Jacks and necessary cables were 

measured out and soldered to minimize waste of space. 

 

Figure F.1: Input and Output Jack on the box 
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Figure F.2: Logo example 

 

Appendix G - External Equipment 

To help narrow the focus of the VE1939 project, several pieces of external hardware were used. 

These were not used in place of any effects or processing that we ever planned to do, but 

allowed us to focus on what did fall within the scope of our original plan. 

Our first input was a Shure PE15L Cardioid Dynamic microphone, with a built-in switch. This 

allowed us to be able to reject unwanted noise beyond what the performer was directly saying, 

and to be able to quickly turn off the input if things went wrong. 

 

Figure G.1: Microphone with switched used for vocal input 
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On the input side, we used a preamp and compressor to allowed us to keep the input loud 

enough to make it through the vocoding processes, but compress it to keep it from clipping. 

The equipment used was an M-Audio Duo Mic Pre Stand Alone A/D Converter and a Symetrix 

501 Compressor, pictured here. 

 

Figure G.2: Preamp and Compressor used for vocal input 

 

For the synthesizer, we used an M-Audio Axiom49 USB MIDI keyboard plugged into a Raspberry 

Pi. We used such a relatively large keyboard because it more closely reflected the range of a 

human singer, more so than an octave and a half keyboard. 

 

 

Figure G.3 MIDI Keyboard used for Synthesizer input 
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On the output side, we used a Rane LT22 Line Transformer to condition the signal and prevent 

hums and other external noise. This then fed two Equator D5 Direct Field Monitors, which 

provided us slightly more volume and much higher fidelity than the lab speakers. 

 

 

Figure G.4: Speakers and Isolation Transformer  

 

The downside to the majority of the external equipment used was simply greatly increasing the 

size and complexity of our setup, going from a medium sized ammo box to a full tabletop of 

gear.  However, the flexibility that accommodating a variety of input and output signal chains 

affords means the VE1939 could potentially fit into more live setups and existing musician rigs, 

making the benefits of the external gear far outweigh the costs. 
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